2793. Count the Number of Complete Components

Medium
Depth-First Search
Breadth-First Search
Union Find
Graph

Description

You are given an integer n. There is an undirected graph with n vertices, numbered from 0 to n - 1. You are given a 2D integer array edges where edges[i] = [ai, bi] denotes that there exists an undirected edge connecting vertices ai and bi.

Return the number of complete connected components of the graph.

A connected component is a subgraph of a graph in which there exists a path between any two vertices, and no vertex of the subgraph shares an edge with a vertex outside of the subgraph.

A connected component is said to be complete if there exists an edge between every pair of its vertices.

 

Example 1:

Input: n = 6, edges = [[0,1],[0,2],[1,2],[3,4]]
Output: 3
Explanation: From the picture above, one can see that all of the components of this graph are complete.

Example 2:

Input: n = 6, edges = [[0,1],[0,2],[1,2],[3,4],[3,5]]
Output: 1
Explanation: The component containing vertices 0, 1, and 2 is complete since there is an edge between every pair of two vertices. On the other hand, the component containing vertices 3, 4, and 5 is not complete since there is no edge between vertices 4 and 5. Thus, the number of complete components in this graph is 1.

 

Constraints:

  • 1 <= n <= 50
  • 0 <= edges.length <= n * (n - 1) / 2
  • edges[i].length == 2
  • 0 <= ai, bi <= n - 1
  • ai != bi
  • There are no repeated edges.

Hints

Hint 1
Find the connected components of an undirected graph using depth-first search (DFS) or breadth-first search (BFS).
Hint 2
For each connected component, count the number of nodes and edges in the component.
Hint 3
A connected component is complete if and only if the number of edges in the component is equal to m*(m-1)/2, where m is the number of nodes in the component.

Statistics

Acceptance
77.7%
Submissions
197,711
Accepted
153,657