3509. K-th Largest Perfect Subtree Size in Binary Tree

Medium
Tree
Depth-First Search
Sorting
Binary Tree

Description

You are given the root of a binary tree and an integer k.

Return an integer denoting the size of the kth largest perfect binary subtree, or -1 if it doesn't exist.

A perfect binary tree is a tree where all leaves are on the same level, and every parent has two children.

 

Example 1:

Input: root = [5,3,6,5,2,5,7,1,8,null,null,6,8], k = 2

Output: 3

Explanation:

The roots of the perfect binary subtrees are highlighted in black. Their sizes, in non-increasing order are [3, 3, 1, 1, 1, 1, 1, 1].
The 2nd largest size is 3.

Example 2:

Input: root = [1,2,3,4,5,6,7], k = 1

Output: 7

Explanation:

The sizes of the perfect binary subtrees in non-increasing order are [7, 3, 3, 1, 1, 1, 1]. The size of the largest perfect binary subtree is 7.

Example 3:

Input: root = [1,2,3,null,4], k = 3

Output: -1

Explanation:

The sizes of the perfect binary subtrees in non-increasing order are [1, 1]. There are fewer than 3 perfect binary subtrees.

 

Constraints:

  • The number of nodes in the tree is in the range [1, 2000].
  • 1 <= Node.val <= 2000
  • 1 <= k <= 1024

Hints

Hint 1
For a subtree to form a perfect binary subtree, its children should also be perfect binary subtrees.
Hint 2
Check recursively that both the node and its children are perfect binary subtrees.
Hint 3
Gather all the perfect binary subtrees and return the kth largest.

Similar Questions

Statistics

Acceptance
61.9%
Submissions
44,980
Accepted
27,840