2569. Number of Beautiful Partitions

Hard
String
Dynamic Programming
Prefix Sum

Description

You are given a string s that consists of the digits '1' to '9' and two integers k and minLength.

A partition of s is called beautiful if:

  • s is partitioned into k non-intersecting substrings.
  • Each substring has a length of at least minLength.
  • Each substring starts with a prime digit and ends with a non-prime digit. Prime digits are '2', '3', '5', and '7', and the rest of the digits are non-prime.

Return the number of beautiful partitions of s. Since the answer may be very large, return it modulo 109 + 7.

A substring is a contiguous sequence of characters within a string.

 

Example 1:

Input: s = "23542185131", k = 3, minLength = 2
Output: 3
Explanation: There exists three ways to create a beautiful partition:
"2354 | 218 | 5131"
"2354 | 21851 | 31"
"2354218 | 51 | 31"

Example 2:

Input: s = "23542185131", k = 3, minLength = 3
Output: 1
Explanation: There exists one way to create a beautiful partition: "2354 | 218 | 5131".

Example 3:

Input: s = "3312958", k = 3, minLength = 1
Output: 1
Explanation: There exists one way to create a beautiful partition: "331 | 29 | 58".

 

Constraints:

  • 1 <= k, minLength <= s.length <= 1000
  • s consists of the digits '1' to '9'.

Hints

Hint 1
Try using a greedy approach where you take as many digits as possible from the left of the string for each partition.
Hint 2
You can also use a dynamic programming approach, let an array dp where dp[i] is the solution of the problem for the prefix of the string ending at index i, the answer of the problem will be dp[n-1]. What are the transitions of this dp?

Statistics

Acceptance
32.6%
Submissions
39,661
Accepted
12,930