2601. Number of Great Partitions

Hard
Array
Dynamic Programming

Description

You are given an array nums consisting of positive integers and an integer k.

Partition the array into two ordered groups such that each element is in exactly one group. A partition is called great if the sum of elements of each group is greater than or equal to k.

Return the number of distinct great partitions. Since the answer may be too large, return it modulo 109 + 7.

Two partitions are considered distinct if some element nums[i] is in different groups in the two partitions.

 

Example 1:

Input: nums = [1,2,3,4], k = 4
Output: 6
Explanation: The great partitions are: ([1,2,3], [4]), ([1,3], [2,4]), ([1,4], [2,3]), ([2,3], [1,4]), ([2,4], [1,3]) and ([4], [1,2,3]).

Example 2:

Input: nums = [3,3,3], k = 4
Output: 0
Explanation: There are no great partitions for this array.

Example 3:

Input: nums = [6,6], k = 2
Output: 2
Explanation: We can either put nums[0] in the first partition or in the second partition.
The great partitions will be ([6], [6]) and ([6], [6]).

 

Constraints:

  • 1 <= nums.length, k <= 1000
  • 1 <= nums[i] <= 109

Hints

Hint 1
If the sum of the array is smaller than 2*k, then it is impossible to find a great partition.
Hint 2
Solve the reverse problem, that is, find the number of partitions where the sum of elements of at least one of the two groups is smaller than k.

Statistics

Acceptance
33.2%
Submissions
39,923
Accepted
13,249